Features of the formate dehydrogenase mRNA necessary for decoding of the UGA codon as selenocysteine.

نویسندگان

  • F Zinoni
  • J Heider
  • A Böck
چکیده

The fdhF gene encoding the 80-kDa selenopolypeptide subunit of formate dehydrogenase H from Escherichia coli contains an in-frame TGA codon at amino acid position 140, which encodes selenocysteine. We have analyzed how this UGA "sense codon" is discriminated from a UGA codon signaling polypeptide chain termination. Deletions were introduced from the 3' side into the fdhF gene and the truncated 5' segments were fused in-frame to the lacZ reporter gene. Efficient read-through of the UGA codon, as measured by beta-galactosidase activity and incorporation of selenium, was dependent on the presence of at least 40 bases of fdhF mRNA downstream of the UGA codon. There was excellent correlation between the results of the deletion studies and the existence of a putative stem-loop structure lying immediately downstream of the UGA in that deletions extending into the helix drastically reduced UGA translation. Similar secondary structures can be formed in the mRNAs coding for other selenoproteins. Selenocysteine insertion cartridges were synthesized that contained this hairpin structure and variable portions of the fdhF gene upstream of the UGA codon and inserted into the lacZ gene. Expression studies showed that upstream sequences were not required for selenocysteine insertion but that they may be involved in modulating the efficiency of read-through. Translation of the UGA codon was found to occur with high fidelity since it was refractory to ribosomal mutations affecting proofreading and to suppression by the sup-9 gene product.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The nature of the minimal 'selenocysteine insertion sequence' (SECIS) in Escherichia coli.

The UGA codon, usually a stop codon, can also direct the incorporation into a protein of the modified amino acid selenocysteine. This UGA decoding process requires a cis -acting mRNA element called 'selenocysteine insertion sequence' (SECIS) that can form a stem-loop structure. In Escherichia coli the SECIS of the selenoprotein formate dehydrogenase (FdhH) mRNA has been previously described to ...

متن کامل

Recognition of UGA as a selenocysteine codon in eukaryotes: a review of recent progress.

Introduction UGA codons function alternatively either as selenocysteine codons or as termination signals both in prokaryotes and in eukaryotes. This cotranslational incorporation of selenocysteine at UGA codons has earned it the designation of the 21st amino acid [ 11. Considerable progress has been made recently in unravelling the process of selenocysteine incorporation, particularly in prokar...

متن کامل

Cotranslational insertion of selenocysteine into formate dehydrogenase from Escherichia coli directed by a UGA codon.

The structural gene (fdhF) for the 80-kDa selenopolypeptide of formate dehydrogenase (formate:benzyl viologen oxidoreductase, EC 1.2.--.--) from Escherichia coli contains an in-frame UGA codon at amino acid position 140 that is translated. Translation of gene fusions between N-terminal parts of fdhF with lacZ depends on the availability of selenium in the medium when the hybrid gene contains th...

متن کامل

Recoding the genetic code with selenocysteine.

Selenocysteine (Sec) is naturally incorporated into proteins by recoding the stop codon UGA. Sec is not hardwired to UGA, as the Sec insertion machinery was found to be able to site-specifically incorporate Sec directed by 58 of the 64 codons. For 15 sense codons, complete conversion of the codon meaning from canonical amino acid (AA) to Sec was observed along with a tenfold increase in selenop...

متن کامل

In vitro and in vivo characterization of novel mRNA motifs that bind special elongation factor SelB.

The special elongation factor SelB of Escherichia coli promotes selenocysteine incorporation into formate dehydrogenases. This is thought to be achieved through simultaneous binding to selenocysteyl-tRNASec and, in the case of formate dehydrogenase H, to an fdhF mRNA hairpin structure 3' adjacent to the UGA selenocysteine codon. By in vitro selection, novel RNA sequences ("aptamers"), which can...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 87 12  شماره 

صفحات  -

تاریخ انتشار 1990